
164

E S S AY 0 4

H o w a r t i s t i c m e t h o d s e l i c i t c r i t i c a l
r e f l e c t i o n o n s o f t wa r e

A l e x a n d e r
R o i d l

POETIC SOFTWARE

165

P o e t i c S o f t wa r e

POETIC SOFTWARE

I N T R O D U C T I O N

Software has taken command of our daily life.1 it is omni-
present and most of our western society would come to a halt
without it. at the same time, software has become so ordinary,
that it is often overlooked. Software is taken for granted while
being increasingly entangled in our life and continuously
adopting new tasks. our computers seem to become smarter
through new kinds of algorithms. this leads to new challenges
in understanding software – not only from a scientific point of
view but also from a cultural, political and social perspective.
Software has also found its way into the art and vice versa, but
there are still gaps in the relation between the two. i assume
that the interaction between software and art can be produc-
tive and helpful for the research in both of the disciplines.

the question that i am asking is: How can artistic methods
be used to elicit critical reflection on software as a cultural
object beyond the interface? the current perception and use
of software are significant parts of this research, especially
in contrast to the original culture around software, which
included hacking and required every artist to write their own
software. this essay explores the multiple layers of software
with a particular focus on the dependencies and imaginations
that arise around and through software. How are the entan-
gled, hidden layers of software coming to the surface?

Software consists of several parts, that could be divided into
the code, the compilation, the execution and its manifestation
(e.g. visual output on displays, or the computer reacting to
mouse clicks). the code is a well researched topic and there

1 referring to the book of Lev Manovich, Software takes command

166

a L e x a n d e r r o i d L

have been many works that use code and programming for
artistic purposes. the manifestation of software execution
is what people are in contact with the most. the visual out-
come on the screen is what determines how users perceive
software. However, outcomes of software can also be invisible
to the user, like data transmission, web servers or software
for infrastructures. what is visible is mostly not the software
itself, but the result of its execution (a webpage, or trains
going back and forth). execution is the most abstract part,
but at the same time it is the most crucial part of software.
during runtime, machine code2 turns into machine commands
and physical current, resulting, for instance, in a change of
pixel colors. this complex interplay, when the code turns into
machine action, is in itself an act of poetic expression – an
interpretation of the code through the machine, an in-between
state with clearly defined rhythmic. the exact moments of
these transitions are beyond human perception. a division
of software would only simplify the complex inter-dependen-
cies the different parts have. it is precisely these moments of
transition, the in-between states, the dependencies, that this
essay tries to emphasize.

T H E POET RY I N SOF T WA RE

i consider poetry as a reference to the emotional, subtle and
artistic expression that software can have. this work is not
about considering software code as poems or as literature.
it points to the non-neutral and imaginative character that

2 the human readable code is transformed into machine code through

compilation. it is a process of translation from human readable in-

structions to machine instructions. only the machine code can be

executed by the machine, so the part of compilation is crucial to the

creation of software.

167

P o e t i c S o f t wa r e

software already has and that can be used for further artistic
engagement. it also embraces the potential non-functional
attributes of software and acknowledges the metaphors that
software uses. it reflects on the different layers of interpre-
tation and execution that software can have, and leaves the
result open for interpretation.

Poetic software provides the possibility to create new artistic
software, that is beyond the interface and beyond the expected
mode of operation or depiction of software. Poetic software
does not need to function but comes with an inherent call for
statements about issues of software.

during the research for this project, i found myself returning
to the essay There is no Software by Kittler over and over
again, drawing inspiration from and following up on the vari-
ous issues touched upon by Kittler. i uncovered a great variety
of controversies surrounding the creation, execution and use
of software. furthermore, i realized that the more research
i did on software and its implications for our lives, the more
aware i became of the software i have been using. i started
observing my attitude towards various applications that have
been shaping my life and work every day, and started ques-
tioning many functions and backgrounds of software that i
had viewed as a given before.

i became an ethnographer of my own work in progress. i real-
ized that my behavior and everyday occurrences in the inter-
action with software reflected what i was reading in research
papers and articles on my screen, and vice versa. Kittler serves
as a point of departure for different controversies around soft-
ware. this also leads me to the arts, and why i think art might
provide possible approaches towards these different topics.

168

a L e x a n d e r r o i d L

T H E M ET HOD

the first part of my work is an ethnographically-inspired ex-
amination of the interaction with my computer, while reading
Kittler’s essay “there is no software”. the text unfolds on two
different levels: on the one hand, i am describing the process
of reading while interacting with the software i use to do so.
on the other hand, there are interventions to reflect on vari-
ous concepts touched upon critically. these interventions refer
to either Kittler’s text itself, or to the software that i am using.
in the second part, i am describing how art provides different
frameworks to approach the different aspects i pointed out in
the first part, and how art and software relate to each other’s
practices.

WHY T H IS M ET HOD?

the detailed description of reading digitally makes the vari-
ous software that is being used visible. through that, the soft-
ware can be observed while at work. next to this, it is a great
chance to revisit the text of Kittler. this method also allows
for new encounters and associations with software, that help
to recognize the different agents at stake when thinking about
the processes of software and the involvement of art with it.

WHY ‘T H ERE IS NO SOF T WA RE ’ BY KI T T LER?

this text very early became one focus of my interest and
research. the text offers an excellent source for thinking
about software today. Because in the essay from 1992 Kittler
is not negating the existence of software, he instead wants
to emphasize the materiality that is being neglected in his
opinion. this is a huge tension that we can also recognize in
computation today. even if we do not dismiss the existence of
software, it becomes more and more invisible. workflows are
so seamless, it seems almost like there is no software.

P o e t i c S o f t wa r e

Fig. 1: The document viewer showing
There is no Software by Kittler.

170

a L e x a n d e r r o i d L

1 . I A M R E A D I N G, T H E C O M P U T E R I S
R E A D I N G
or how to observe and understand the layers of

software

i am reading There is no software by friedrich Kittler. i down-
loaded the pdf file of the text onto my computer using the fire-
fox browser. the browser has saved the file in my downloads
folder. i can find it through the file-system, which i can see in
a representational view by opening the file explorer.

By clicking the icon of the file explorer, the computer opens a
new window for me. i see different icons of folders and many
other ones for files. i double click my way through the folders
until i end up in the downloads folder, where the newly down-
loaded file is placed in a list view among others. the file is
called ‘Kittler_friedrich_1992_1997_there_is_no_Software.
pdf.’ i hover over the small bar with the title. the operating
system default setting is to open the file with the document
viewer and so i do, by double-clicking the left mouse button.
within seconds, a new window appears, putting the file
manager window into the background and foregrounding the
title page of the pdf framed by small icons and scroll-bars. i
click to enlarge to full-screen, and start to scroll down till the
first lines of text appear. i zoom out pressing the combination
ctrL and “-” twice. next, i start reading the first sentence.
“the present explosion of the signifying scene, which, as we
know from Barry McGuire and a f. n. dahran, coincides with
the so-called western world, is instead an implosion.” Barry
McGuire? i hover the name, press the mouse down and drag
from “B” to “e”. the text tints white with a blue background.
the release of the mouse button is followed by pressing ctrL
c. i switch to the browser, which still shows the download

171

P o e t i c S o f t wa r e

page of the Pdf. i paste the name into the search bar and
press enter. the search engine shows a list of results – one
video; this must be it. as the link reacts to my hovering, i
click on it and, with a short flickering, i end up on Youtube.
without any action required, the video starts and the speak-
ers play: “the eastern world it is exploding”, to which Kittler
must have referred.

→ COM PRESS ION: TOO S MA LL TO S EE, TOO

LA RG E TO F ORG ET

The implosion and explosion can well be seen on
different levels of software. While the complexity
and interplay of different technologies are explod-
ing, the visibility and the potential for understanding
are imploding. Increasingly better software brings
great advances, for instance in computer vision, but
at the same time, it becomes harder to understand.
The potential of having more sophisticated tech-
nology may come at the risk of blurring the under-
standing. At the same time, these highly complex
algorithms require more hardware and even better
processors.

The implosion of files is a very well used method
in the form of compression. Compression needs
software that can rearrange the bytes of files using
various algorithms, for the sake of file size. Smaller
files can be stored easier and have advantages
for transmitting. However, this can have different
implications. It is a method to circumvent the
physical limitations (to some extent). It means that
files can be stored with very little storage available.
Other than that, we produce increasingly bigger

172

a L e x a n d e r r o i d L

files, because cameras output high-resolution im-
ages, we can gather more data, scan better and
display highly sophisticated websites. How directly
does this affect us? Unlike the imagination that the
digital is immaterial, the processing of big files for
instance is consuming much energy (De Decker,
2018). Therefore, some websites like lowtechmag-
azine.com are thinking about different methods on
how to host low-energy web pages. They are using
solar panels and produce their websites in a way
that makes the site very light in terms of data that
has to be transmitted. From this case we can see
that compression can have multiple effects. It is
the small nuances that make software a powerful
tool to think about current cultural topics. This
lightweight approach gives reason to think about
different aspects of how websites are being served
and how they are built.

Space is a recurrent scheme in computation.
Computer Science tries to shrink and expand at
the same time. It is almost like a play that can be
observed on different layers. The ‘compression of
space’ into the size of a microchip is opposed with
the exploding need for power or, to remain within
the metaphor of space, disk space (Kitchin, 2011).
The expansion of the digital does not remain within
the computer, but it is actively becoming part of
our real space. “[S]oftware generates behaviors and
opportunities, and traffics in meanings, readings,
and interpretations” (Kitchin, 2011). To figure out
these exact moments of influence and these bor-
ders between computers and the real world might

173

P o e t i c S o f t wa r e

be very hard to accomplish, if not impossible. As
Hu points out, the material and the digital world are
interwoven more deeply than we think. For example,
the imagination of the internet as a cloud manifests
in the real world as cables that get placed across
oceans, and buildings that hold thousands of serv-
ers (Hu, 2016). Therefore, it becomes clear that a
separation between the digital and the material
world does not make sense.

i stop the video by clicking onto the face of the singer and
a smoothly appearing pause sign inside a circle signals the
success of my action. i change back to the document viewer
by clicking on the window that got hidden in the background
by the browser.

the words i read are displayed with a grained border pre-
sumably caused by the scanning process. as i read on, my
t-shaped cursor follows the lines of the text. i continue with
the next sentence. “the last historical act of writing may well
have been the moment when, in the early seventies, the intel
engineers laid out some dozen square meters of blueprint
paper” (Kittler, 1992).

→ I DEPEN D ON YOU, WHO DO YOU DEPEN D ON?

With its increasing speed, computation fosters it-
self while depending on the previous version of its
own. The same holds true for software. Therefore,
we can recognize a spiral of dependencies and
influences that includes humans and machines.
After the first hardware was able to draw new, even
smaller hardware than it would ever have been pos-
sible with paper and pen, the system of hardware

a L e x a n d e r r o i d L

Fig. 2: The internet in its physicality.
Cables are following old railroad routes.

P o e t i c S o f t wa r e

Fig. 3: The software of satellites manifests
in the form of calibration targets in the
desert.

176

a L e x a n d e r r o i d L

design became dependent on itself (Kittler, 1992).
This means that the next generation of hardware is
always enabled by and relying on the previous ver-
sion, making it possible to create even smaller and
more complicated parts. The same can be found in
the culture of software development. Software can
only be built with software: software that enables
to write the program code, software that compiles
the code into machine-readable binary-code and
an operating system that executes it. It means that
nearly every program relies on other ones, requiring
users to pre-install specific versions of software in
order to run the program. If one single component
of this chain of dependencies breaks, many other
programs will be affected.

The dependence on companies that produce soft-
ware is huge. If the company decides to discontin-
ue their software, the users become immediately
aware of their dependence, as they can not use the
discontinued software anymore. This happened for
instance when Microsoft shut down one of their
scripting languages. Many companies that relied
on it suffered (Ullman, 2012).

Software is changing over time. As Ellen Ullman
mentions, this is also the reason why software can
quickly become unstable, especially if multiple pro-
grammers are working on a program over a long pe-
riod of time. Code can be written in many different
ways, making it hard for other people to read or to
understand. Still, huge systems with a long history
have to be kept running as many other systems rely

177

P o e t i c S o f t wa r e

on them resulting in a very fragile setup, in which
you can hardly change anything (Ullman, 2012).
These kinds of dependencies tell their own stories
and are rarely clearly visible. These dependencies
have the potential to show the history of software.
It clearly shows that software cannot exist on its
own, but is always embedded into a greater eco-
system, a cultural framework that follows its own
rules.

“We shape our tools and, thereafter, our tools
shape us,” (Davis, 2016) says a famous quote by
John Culkin from 1967. If we look at the depend-
encies of software, one could also say: we shape
tools and these tools shape new tools. Transferring
this idea to the notion of software as a cultural ob-
ject, the interrelation between shaping and being
shaped could be formulated as follows: software
creates and influences culture, and therefore this
culture shapes new social conditions under which
the construction and use of software itself are
altered. This might become clear when looking at
the example of software hacking. The distribution
of proprietary software with Digital Rights Man-
agement (DRM) leads to multiple groups cracking
and circumventing software limitations. These
cracks are then distributed as new software.
The original culture of software was actually built
around a free culture, that distributed code open-
ly and freely. Early software production was very
dependent on this openness (Mansoux, 2017).
Without the sharing of software and code, the
development would have been very tedious, if

178

a L e x a n d e r r o i d L

possible at all. It is this openess that nowadays has
to be defended, like the free software movement
does. Free software is not self-evident anymore,
because companies commercialized software for
their profits.

i further follow the dark pixels on the screen to the roaring
sound of the computer. it is not clear whether the ventilation
sound is triggered by the hardware or the software, which is
causing the cPU to overheat. Kittler is writing about how lan-
guage gets abstracted from high-level, human-readable words,
to assembler code, that is being translated into non-readable
machine code. as Kittler talks about this “postmodern tower
of Babel” (Kittler, 1992, p. 148), i realize how my own windows
have started to build up like a tower. the document viewer
on top of the browser on top of the settings on top of the mail
program, and so on.

→ F RA M EWORK CULT URE

Programming languages are based on other pro-
gramming languages in order to make the code
easier to write and read. Low-level languages
are very close to the actual machine processes
and therefore very complex to write. This is why
high-level languages were constructed to translate
these elaborate processes into human readable
concepts and language. In addition to that, pro-
grammers often rely on third-party frameworks,
which provide functions that are very convenient
to implement. Instead of having to write the code
themselves, they can just import it by using a single
line of code. Therefore, the whole set of tools pro-
vided by the so-called library becomes available

179

P o e t i c S o f t wa r e

for the use of the programmer. The process of using
frameworks often obscures the actual algorithms.
For example, it can be quite challenging to create a
machine learning algorithm from scratch but frame-
works like Keras or Tensorflow make it accessible.
The problem is that the programming syntax is
very close to human language, which makes the
underlying code hard to grasp. Thus, it is harder to
change functions that are underneath the layer of
the framework-interface (Cox, 2007).

Furthermore, different programming languages fa-
vor different concepts of language and writing as
well (ibid.). The choice of programming language al-
ready determines a certain style of writing. Because
language significantly shapes our imagination, the
choice of programming language also influences
our understanding of software. Although scripting
languages are very popular right now, they cannot
replace low-level programming.

“High-level programming approaches can be very
successful in achieving certain ends, but the very
imposition of higher-level constructs and meta-
phors also limits awareness of how code operates
in and for itself and what may be achieved through
that. Arguably it is the changes in low-level systems
that have provoked the biggest paradigm shifts,
such as the development of binary computation
and Turing machines […]” (Yuill, 2004)

To me, this also means that an active engagement
with different levels of programming is necessary to

180

a L e x a n d e r r o i d L

reflect essential aspects of computation. A critical
practice around software should therefore not only
make use of one specific programming language.
This helps to free oneself from the dependencies
stated above, and makes it possible to engage on
different layers, not only the surface.

i continue with the text, and while Kittler describes buying a
commercial version of wordPerfect, i remember my old copy
of word that is still installed on my old partition. i go through
the folders of the application folder of my second partition
and scan through all the apps that i probably haven’t used
for months. i follow the alphabetical order of the list view and
after some programs starting with “n”, a folder called Mi-
crosoft appears. i double click on the icon of an orange folder
and end up in a grid view, containing 6 files and some folders.
in-between them: word.exe. the executable file to open word.
i can’t execute it on Linux.

→ I A M A CONS UM ER, NOT A US ER

Nowadays the software that is required to use a
machine comes pre-installed and ready to use.
Software can be downloaded from centralized
marketplaces: app stores. This causes an immense
dependence on the producers, who are in return
depending on owners of these marketplaces
(including their platform framework and policies).
These producers have developed an infinite se-
lection of apps, which is another example of the
‘explosion’ of software that was previously men-
tioned. The flood of applications causes software
to become a mundane occurrence. The danger
here is that we take software for granted. When

181

P o e t i c S o f t wa r e

we have a problem, there is an app for it. Nobody
thinks about the possibility of editing software and
adjusting it to one’s need. This is not only because
usually it is not possible to edit the software due
to DRM, but also because the average user is not a
user anymore. Instead, people are being educated
by companies to be consumers instead of users,
let alone creators.3 It is in the companies’ interest
to make their clients dependent on their product.
Therefore companies are not interested in opening
up their products, but they are instead locking them
up. They are, then, slowly feeding their clients with
updates and new fancy features. This is great for
users who just need to get their job done and who
want to be in contact with technical struggles as lit-
tle as possible. On the other hand, it means that for
one, the use of software is dictated by companies
and, secondly, that if you want to engage with your
software more in-depth you cannot do so. Often,
you cannot look at the source code, reuse parts of
it or modify the program to your needs.

Of course, there is also software that embraces
an open and reusable character. This also provides
an excellent source for discussion about software.
The problem is that such software often requires
other programs and more technical knowledge.
The average user is not willing to invest that kind of
effort. There are also other kinds of software, that

3 the definition of user has changed through the years. in the beginning

of computation there was basically no distinction between a user and

a programmer, because of the simple fact that users had to program.

182

a L e x a n d e r r o i d L

embrace the user as an active agent, while still en-
abling a simple use on the surface. For example, the
MediaWiki software allows for accessible editing
on the browser, while still providing an infrastruc-
ture to extend the functions easily.

“the accompanying paperware” (Kittler, 1992, p. 148) – which
paperware? where is the manual of my document viewer? i
move my mouse towards the options on top of the window
and click on help. a small window opens, displaying a table of
contents. “How to use it”, “find text in documents”… a page
containing hyperlinks for different sections. it is probably the
first time i ever entered this space of the program.

→ T ELL M E WHAT TO DO

Software can be so abstract, that the way software
affects people is often through the metaphors it
uses. What we remember is the animal icon on the
start screen, not the algorithm that it uses. For an
artistic engagement, I think it is crucial, to carefully
examine the different parts of software and then
reflect on their use – like, for example, the user
manual.

The manual of most programs is part of the soft-
ware. Actually, the manual is software. The hand-
book does not come in a physical form anymore,
just as the software does not ship on Floppy or CD-
ROMs. Software is a download (or a service, that
is only running online4), so the users cannot touch

4 the concept of software as a service (SaaS) is a very current issue in

software. the software is not running on the computer of the user but

183

P o e t i c S o f t wa r e

it anymore. Thus, it becomes even more abstract.
Through the handbook, the software manifests
itself as a tool. A tool that has certain functions
and the manual describes how to use those func-
tions correctly. Nowadays, the handbook often
constitutes a space that stays undiscovered. If we
want to consider software as an artistic material,
the handbook can further gain new functions as a
description, as a space for thoughts. The handbook
was also used as a metaphor at the readme festival
2005 to guide visitors through an exhibition of soft-
ware. Software often remains invisible in its func-
tions and statements, so it is necessary to describe
what it is doing. The manual illustrates the fact that
the ‘user’ needs to be informed about what to do
with software and how to use it.

i close the help window and find my way back to the text. in
the meantime, Kittler turns towards his punchline: there is
no software.

→ T H ERE IS SOF T WA RE, C A N’T YOU S EE?

Although software is dependent on hardware, it
does not mean that there is no software. A deeper
engagement with software means taking software
seriously. Even though it might be argued that
software is only the representation of machine

rather on the server of the provider. this means that the user does

need an internet connection and is constantly sending data to the

server. in addition, the user is not in hold of any executable file or pro-

gram anymore, ending up in even more issues around dependencies.

184

a L e x a n d e r r o i d L

operations, it is vital to acknowledge software as
an independent object of study.

Even though Kittler was arguing that there is no
software because it is intrinsically connected to
its hardware, Cramer points out that “if any algo-
rithm can be executed mentally, as it was common
before computers were invented, then of course
software can exist and run without hardware”
(Cramer, 2002a).

Following this argument, it points to the idea of
software in a very conceptual way, not only defining
software as a program that is running on particular
hardware. A recent example of this would be that
people compute blockchains by hand to demon-
strate the math involved. Eventually, all layers of
diminishing abstraction on top of hardware deserve
attention. Still, it is important to recognize both of
the perspectives for their importance – the materi-
alistic and the cultural/political.

There is no clear border between software and
hardware. Where does software begin and hard-
ware end? Is it when the code is being compiled,
or is it when the machine code is transformed into
electrical signals? In the end, the exact point where
the software transforms into hardware is not clear-
ly perceivable (Tenen, 2017).

There is undoubtedly a tension between the devel-
opment of software and hardware. The hardware
limits the software. We can not build applications

185

P o e t i c S o f t wa r e

that run faster than the hardware. Machine learning
algorithms, for example, need a lot of resources to
calculate their models. This means that effective
research with this technology is only possible with
sufficient hardware. Even though software can
be seen as a conceptual good, it is impossible
to execute it only mentally, especially when using
very complicated algorithms. Software is only ef-
fective through its execution, and thus through its
performance.

i continue with reading Kittler. “first, on an intentionally
superficial level, perfect graphic user interfaces, since they
dispense with writing itself, hide a whole machine from its
users” (Kittler, 1992, p. 149).

→ US ER I N T ERFAC E

The user interface enables a convenient way
to display software (or at least parts of it). This
representation is, however, only an interpretation
of what the designer thought is the best way to
display it (Hadler et al., 2016). At the same time, it
looks like this user interface is the only truth that
the program holds. It certainly does not become
evident that this interface is not neutral. The GUI
instead hides. It hides the processes, many func-
tions, the source code, the possibilities, or the
decision it takes for you.

The need for a human approach to software also
becomes visible from the great use of Graphical
User Interfaces. The so-called GUI is not part
of the original imaginary of computation, where

186

a L e x a n d e r r o i d L

commands were being filled in via a command line.
However, today’s average user is only surrounded
by software displayed via a ‘window’, encountering
the terminal only by chance. Not only does the GUI
simplify commands into buttons and mouse-ac-
tions, but it also makes software more human. A
button that has a 3D effect, the on/off function is
displayed via a switch, the mouse transforms into
a hand or the form that looks like a letter, which, of
course, you fill in by pressing a pen symbol (Fuller,
2008). This is also known as skeuomorphism. It
means that objects of the real world are being used
to represent digital functions or interface objects.
Humans anthropomorphize and use metaphors to
communicate the complexities of a less well-known
domain (the digital) via the vocabulary and con-
cepts associated with a well-known domain (the
physical world). The skeuomorphism in GUIs is an
excellent example of that.

as i go further in Kittler’s text, focusing on the text, my mail
software wants to interrupt me with some notifications about
incoming mails. i click them away. Kittler is writing about how
computers are writing and reading themselves. i want to copy
this part in my notes. i drag the mouse from “in contrast” to
“read and write by themselves” and, as the text tints, the layer
of text reads: “in contnast to all histor- ical writigtools, are
able to read and write by thenvselves” (sic! by ocr?) (Kittler,
1992, p. 147). My machine has read the text before me – not
only once. the text has probably been written and read many
times before i opened it. the computer had read the document
looking for words using optical character recognition, and
even made its own interpretation. that explains why the

187

P o e t i c S o f t wa r e

selected text is wrong because the program misinterpreted
some of the characters. together with this incorrect version of
the text, it got written again to the memory. then, the text was
read another time – into the working memory, when i opened
it with the document viewer.

→ ERROR: H EA DLI N E NOT F OUN D

We can get a spark of what execution of code
means and how software really acts and performs
when it fails or when it is taken out of its context
(Winograd and Flores, 1995). In the following sec-
tion, I want to argue that for a serious engagement
with software it is also necessary to look at the
non-functional and the stuff that is in-between the
pixels and conducting paths. We expect software
to run seamlessly, but what if software fails or mal-
functions? What if software has no function?

“Most people notice infrastructures only when
they are put in the wrong place or break down. This
means that public knowledge of them is largely lim-
ited to their misplacement or malfunction.” (Parks,
2009)

While The Alliance for Code Excellence imagines
“[a] world where software runs cleanly and cor-
rectly as it simplifies, enhances and enriches our
everyday life is achievable” (Constant, 2018, p. 11).
I argue that the malfunctioning of code can also
be something positive that is revealing and holds
a value. The interruption of a seamless flow makes
undeniable apparent, what could not be seen be-
fore. We can use things without being immediately

a L e x a n d e r r o i d L

Fig. 4: The writing of this essay with
LibreOffice.

189

P o e t i c S o f t wa r e

aware of their presence, but the ‘breakdown’ makes
them visible. So the malfunctions “reveal[e] to us
the nature of our practices and equipment, making
them ‘present-to-hand’ to us, perhaps for the first
time” (Winograd and Flores, 1995, pp. 77–78).

For example, the wrong character recognition as
visible from the text above can also show how the
algorithm works. The mistaken ‘m’ for ‘rn’ shows that
the algorithm might work with visual comparison
and has probably not recognized the gap between
‘r’ and ‘n’ – due to the grain of the text. This conse-
quently gives a clue that the algorithm doesn’t have
an idea about the context of words. Otherwise, it
would have figured out that some words are not
correct English words.

The way software is set up can embrace the fact
that software is failing or not. In the case of seam-
less software that tries to hide failure, the user
does not get any insight. In contrast, when the
setup is embracing its unstable character, the user
knows that there is a potential for crashes. It means
that engagement is undeniable. At the point when it
crashes, you are able to get a glimpse of the inner
workings of software and possibly be even able to
fix it.

The imperfection of software: Digital systems are
often considered to be perfect, without the incon-
sistency and noise that analog systems contain. In-
stead, digital applications also become inaccurate.

190

a L e x a n d e r r o i d L

This is also a result of the dependencies and glitch-
es as pointed out before. Software can even have
the same noise as non-digital objects have. When
Casey Reas wrote about the new Processing5, he
pointed out the high precision that computers
have compared to similar art-forms like Sol LeWitt
practiced6.

“Machines can draw lines with absolute precision
so all the imperfections in a physical drawing are
removed, giving the rendering different character-
istics than those intended by LeWitt” (Reas, 2019).
In reality, it turned out that after a few month pro-
cessing produced the same inaccuracies (glitches)
as a drawing by LeWitt would show. This was due
to updates and changes in the language.

i change from the document view into the writing program
Libreoffice, where i store most of my notes. with a single click
on the icon, no keystroke required, the execution starts and
the start screen appears. Many processes get triggered by
this simple action and the computer follows its instructions,
which i do not know – and don't even see. But not with ease
this time. the only thing that i can occupy right now, that
the process must have ‘frozen’. as my mouse indicates with

5 a software framework to make programming more accessible for

artists.

6 Sol Lewitt was famously known for giving painters instructions on

how to draw paintings. His work is also often used as a reference for

digital art that follows formal instructions, just like software does, for

instance.

191

P o e t i c S o f t wa r e

a spinning motion, i am unable to continue. i am unable to
change the program, i am stuck, just like my program. i try
clicking on the icon, again and again, as if my actions would
trigger the program to finally make it. it is as if i want to tell
the program to try harder by clicking harder. once again i try
to encourage the app, by clicking somewhere randomly on the
screen. i give up. i have had this before, so i know how to act.
‘kill’w. i change to the terminal, type ‘sudo killall libreoffice’. i
give my permission by typing in my password and, happily, i
can see the terminal taking action. with a flicker, the startup
screen that was stuck disappears, freeing me and my cursor
from redundant spinning. i try restarting the program and
hope, that the crash was only due to unlucky circumstances,
maybe just something ‘got stuck’.

→ I MAG I NAT IVE SOF T WA RE

The perception of software is anything but neu-
tral. Software tells stories, through its metaphors,
its contents, its performance. The digital medium
offers new ways of telling stories. This becomes
obvious not only due to different structures, like the
form of the database as Lev Manovich points out
but also because of the different modes of inter-
vention software takes in our life (Manovich, 1999).
The medium keeps evolving at inexorable speed
and so does software, leaving space for new ways
of how to tell and what to tell about computation.

That humans tend to anthropomorphize not only
their surroundings, but also computers and tech-
nology, in general, has been a well-researched
topic among computer sciences & psychology.
Among others, The media equation had shown,

192

a L e x a n d e r r o i d L

that we as humans consciously and unconsciously
anthropomorphize computers (Reeves and Nass,
2003). In addition to that, humans have a vivid and
diverse imagination about invisible processes. This
includes software. Often, digital media black-boxes
certain processes and therefore provides much
space for imagination and narratives that can be
constructed around it (Finn, 2017). Narratives have
been used for the purpose of marketing, and there
have been attempts to create relatable stories
within applications. A popular example is Joseph
Weizenbaum’s Eliza, a digital application which act-
ed as a therapist, chatting with the user. This piece
of software gave convincing proof of how humans
anthropomorphize even simple digital applications
(Wardrip-Fruin, 2012). Tech giants have put great
effort into implementing relatable characters into
their systems, e. g. voice assistants. An assistant
that is helpful and funny that gathers your data
with great pleasure. However, in the past there have
also been unsuccessful attempts to add anthropo-
morphizing elements to programs, only to remind
us quickly about Microsoft’s famous Clippy (Cain,
2017). These stories in applications and around
them make technology more understandable, but
can also be a source for misconceptions. A current
example seems to be the fear of singularity after
machine learning enables applications to ‘magi-
cally’ generate or label images. The gap between
the real potential and the imagination around it is
significant. I don’t want to support an uncritical or
blind approach towards technology – I think it is
important to be realistic, critical and playful equally

P o e t i c S o f t wa r e

Fig. 5: Software error at McDonalds
Regensburg, Germany.

194

a L e x a n d e r r o i d L

with these algorithms, only then turns engagement
into insight.

Another case of narratives is the narrative that ex-
ists outside the software. It lies in its performance.
How it acts, where and when. The realization that
people relate to software on an emotional level
makes it possible to create software that tells more
than its function. It’s possible to tell stories only by
how software works. This kind of narrative has been
used in some works of Software Art. For example, a
work by Luca Bertini which can be found on runme.
org. The work is about two viruses in love. “They
search for each other on the net, running through
connected computers” (Bertini, 2019).

i restart Libreoffice – this time it works. an empty document
opens, and a blinking cursor indicates that i am ready to type.
i switch back to the text viewer where Kittler’s text is waiting
for me, and i copy the last sentence. after clicking my way
back into my editor, i paste the string from the clipboard to
my empty document. immediately, the text fills the screen:

“.theinversestrategyofmaximizingnoisewouldnot only find
the way back from iBM to Shannon, it may well be the only
way to enter that body of real numbers originallyknownascha-
os”. My computer completely rewrote the original text.

→ NOIS E I N SOF T WA RE

The polished interface makes us forget about
what programmers struggle with every day: the
noise that surrounds computation. It is the same
noise that should make us aware of how imperfect

195

P o e t i c S o f t wa r e

and subjective software is, but in many cases, this
noise is being suppressed. Every small glitch is be-
ing removed out of software and every irregularity
is considered a bug. All this noise might instead be
the possibility to explore new opportunities with
code and its execution further. Maybe the beauty
of software lies in exactly this noise, that is being
forgotten about in between the logical operations
with 0s and 1s.

i save the file and the machine once again writes for me to the
hard-drive. i store it using the file format xml. the file gets
stored using the name NotesOnKittler.xml into the documents
folder. if i open the text in a normal text editor, it turns out.
the computer has written noise around the actual text that i
saved. this noise makes up the standards of the .xml format,
encoding information within <tags>.

196

a L e x a n d e r r o i d L

2 . I A M W R I T I N G, T H E C O M P U T E R I S
W R I T I N G
or how to create software

i close all the open windows by pressing ctrL and “w” re-
peatedly. i open Libreoffice and start writing – the computer
starts writing for me. i am typing this very text and the com-
puter constantly listens, displays and saves.

Note: The arrow → marks a relation to one of the
texts above

In the chapter ‘The Culture Industry’ in Dialectic
of Enlightenment, Adorno and Horkheimer state
that culture is infecting everything with sameness
(Adorno, Horkheimer, 2007). They point out how
culture has become part of mass production and
standardization. Adorno and Horkheimer argue
that commercial marketing of culture robs people’s
imagination and takes over their thinking (idem, p.
98). As an example, they name the transition from
telephone to the radio. While everyone was able
to communicate through the telephone, the radio
transformed the once free actor into a mere listener
(idem, p. 115). The reason for this is the commer-
cialization of culture and the resulting relation
between consumer and industry. This means that
the industry creates culture solely for profits. The
consequence for art is that it is also only a product
and therefore loses its critical factor and its auton-
omy (idem, p. 147).

P o e t i c S o f t wa r e

Fig. 6: XML file created with LibreOffice
opened with the text editor Atom.

198

a L e x a n d e r r o i d L

While I disagree with their suggestion to divide
art strictly into commercial and authentic art, I
think their examination of commercialized culture
provides a great observation that also holds true
for software in its current state. This is especially
true if we consider software as a cultural object,
which has extensively been demonstrated by re-
search fields like for example Software Studies. In
the following section, I want to argue that (1) the
commercial marketing of software contributes to
the problems pointed out in the first part of this
essay and that (2) artistic methods, as used in Soft-
ware Art, can provide a potential to counteract and
provide a new perspective to these issues.

(1) CULT URE I N DUST RY A N D SOF T WA RE

Obviously, most software exists to provide financial
benefits to the creators (and owners of market-
places). Also, software has become an object of
the culture industry. This means that the user is a
consumer (→ I am a consumer, not a user), and that
software is guiding people’s thinking thus limiting
their imagination. Software is made to be used by
as many people as possible. Therefore, it has to be
simple and generic. Additionally, people are made
dependent on proprietary software to get as much
money out of them as possible.

Art is confronted with this issue on two different
layers. Artist that use software not only have to
deal with the limited, commercialized software,
but are also taking part in cultural production
activly by distributing their art. Following Adorno

199

P o e t i c S o f t wa r e

and Horkheimer’s assumption that art has lost its
critical character through commercialization this
means that, firstly, the software limits the art or the
practice of the artist, and secondly, that the out-
put of the artist is again constrained, through their
commercialised artwork. So, instead of criticizing
the condition they work in, artists potentially am-
plify the effect of mass produced culture through
the use of commercialized software.

These two layers can be seen from the superficial
use of software. The User Interface (→ User Inter-
face) dominates the perception of software for
most users. A lot of digital arts, like Generative Art,
are focused on output and mostly consider soft-
ware as a tool (Galanter, 2003). They take over the
focus on the surface into their practice. The artistic
use of machine learning is a great example of a user
that is ‘stuck’ on the interface layer. Instead of en-
gaging with the inner functions of neural networks,
artists generate obscure images, while mostly talk-
ing about rather popular topics like datasets, utopia
or dystopia (Greene, 2018). The deep dream7 is not
deep indeed. The use of these algorithms is very
flat and mostly concentrates only on the output
(which is easy to sell). These morphed images are
being generated on high-resources machines using
libraries that are provided by for-profit corporations
(→ Framework culture). This creates a dependence
on fast computers and on libraries of third parties.
Furthermore, when using those libraries, the user

7 deep dream is the name of a machine learning method.

200

a L e x a n d e r r o i d L

is obedient to the big companies creating such
frameworks. Additionally, it also obscures the pro-
cesses and hides software once more, affirming
its already hidden character. Thus, Generative Art
doesn’t really find a way out of the limitations that
come with commercial software, being caught in
exactly that loop of cultural production that Adorno
and Horkheimer criticize.

(2) SOF T WA RE A RT A N D A RT IST IC M ET HODS I N

SOF T WA RE

In the following section, I want to suggest artistic
methods that carry the potential to counteract the
issues discussed in the previous paragraph. The
approach of Software Art provides a great example.
Software Art describes the “artistic preoccupation
with software production” (Cox, 2007, p. 147). This
means that Software Art is using either the soft-
ware itself or code as its material. The subjects
it addresses are mostly the cultural concepts of
software (Cramer, 2002b). Software Art does not
take software for granted and, therefore, it also
acknowledges the importance of the creation pro-
cess of software (ibid.).

To put focus on the process instead of the end
product is not new in the art world, but Software
Art exemplifies this approach “appropriate to
contemporary conditions” (Cox, 2007, p. 147). This
creates the possibility to think of software in terms
of performance. While the result is not necessar-
ily a fixed product that is visible, it can be a run-
time application, which never reaches the state

201

P o e t i c S o f t wa r e

of finishing. An approach like this opens up new
discussions and new ideas. An example of this is
the application Every Icon by John F Simon Jr. It is
a simple 32 by 32 grid that iterates through every
possible combination of black and white squares
in the grid. The application has been running since
January 14, 1997 and will continue for many years.
The application only becomes visible when you
visit the website, which displays the current state.
Other than that, it performs on its own, reaching
formations that will never be seen. In an elegant
way this work challenges the viewer’s imagina-
tion (→ Imaginative Software) about limitations of
computation, while automatically producing new,
unique images.

Only if the role of software itself is questioned or
at least acknowledged in the creation of artworks
can the creativity be freed again from the depend-
encies (→ I depend on you, who do you depend
on?) of the culture industry, as pointed out above.
This method of Software Art is helpful for both
the artist and the user that receives the artwork.
Firstly, it opens new ways for the artist to work
with software and secondly, the recipient will gain
a different perspective on software.

We can see from this that art is occupying prac-
tices that can be useful to evoke critical insight
into software. Art has shown in its history that it
can research complex and abstract issues and
deliver critical insights for its recipients. Software
is so complex in its relations and so versatile in its

202

a L e x a n d e r r o i d L

effects that it might be hard to go about a struc-
tured analysis. Instead, art might provide a field of
exploration and experimentation, which can ques-
tion and enrich the culture around software. Artis-
tic practice can occupy fields that are difficult to
understand on a solely rational level, like in the field
of literacy or theater. Brenda Laurel describes com-
puters as a theatre, due to the factors of runtime,
interaction and space (Laurel, 2013). The execution
of software can be seen as a performance. When
the program is executed, machine code turns into
machine actions. Software can create emotions
and art is able to elicit them. Art offers the oppor-
tunity to deeply engage with certain aspects of
software and connect the cultural to the scientific
realm. Software creates new ways of expression for
artists. Artists can generate experimental software,
that doesn’t need to function as a program but can
work as a cultural object, a critique or a question.
Art has famously shown that it can re-contextual-
ize and question objects of our daily life, that have
become invisible. Art can make software visible
again (→ There is software, can’t you see?), and
question how software is used. It is therefore cru-
cially important for artists who work with software
to understand its internal functioning.

The focus on software was the strength of Soft-
ware Art, which unfortunately got lost in the past
years. Software Artists dissolved to other fields
which are often less specific, like new media arts
or algorithmic art. Ultimately, I want to encourage a
rediscovery of the methods of Software Art and a

203

P o e t i c S o f t wa r e

new engagement with software in the arts, which
has the potential to educate users to be more crit-
ical about their software usage.

C O N C L U S I O N

The artistic methods and impulses provided above
should encourage a way of thinking that reflects on
the inner functions of software, aiming to remap
the issues that we currently see in the realm of
cultural production of software. Deeper artistic
engagement with software is promising to find a
balance between beautiful artistic expression and
fundamental discussion around software usage and
production. Poetic Software can be playful and
serious, subjective and emotional, inspiring and
revealing, helpful and funny at the same time. What
is important is that it shows genuine engagement,
while not falling into the trap of commercial and
thoughtless software usage.

It might be a way to emphasizes the glitch (→ ER-
ROR: headline not found) or use the narrative (→
Imaginative Software), to show what software is
not, and what else software could be.

Eventually, this might be the way back to the noise
(→ Noise in Software) that Kittler was calling for.

i click save and close Libreoffice. the operating system kills
the process and shows the empty desktop.

204

a L e x a n d e r r o i d L

R E F E R E N C E S
Anon. (2018) The Open Group Base Spec-
ifications Issue 7, 2018 edition, [online].
Available at: http://pubs.opengroup.org/
onlinepubs/9699919799/utilities/kill.html

Bertini, L. (2019) runme.org – say it with
software art! [online]. Available at: http://
runme.org/project/+ViCon/

Cain, A. (2017) The Life and Death of Mi-
crosoft Clippy, the Paper Clip the World
Loved to Hate [online]. Artsy. Available at:
https://www.artsy.net/article/artsy-ed-
itorial-life-death-microsoft-clippy-pa-
per-clip-loved-hate

Constant. (2018) The Techno-Galactic
Guide to Software Observation.

Cox, G. (2007) Generator: The Value of
Software Art. In: Rugg, J. and Sedgwick,
M., eds. Issues in Curating Contemporary
Art and Performance. Intellect Books,
147–162.

Cramer, F. (2002) Concepts, Notations,
Software, Art [online]. Available at: http://
cramer.pleintekst.nl/essays/concept_nota-
tions_software_art/concepts_notations_
software_art.html

Cramer, F. (2002b) Contextualizing Soft-
ware Art, 9.

Davis, F. (2016) We shape our tools and,
thereafter, our tools shape us. Medium
[online]. Available at: https://medium.
com/@freddavis/we-shape-our-tools-
and-thereafter-our-tools-shape-us-
1a564cb87484

De Decker, K. (2018) How to Build a
Low-tech Website? [online]. LOW←TECH
MAGAZINE. Available at: https://solar.
lowtechmagazine.com/2018/09/how-to-
build-a-lowtech-website.html

Finn, E. (2017) What Algorithms Want:
Imagination in the Age of Computing.
Cambridge, MA: The MIT Press.

Fuller, M. (2008) Software Studies – A
Lexicon. Cambridge, Mass: The MIT Press.

Galanter, P. (2003) What is Generative Art?
Complexity Theory as a Context for Art
Theory [online]. Available t: https://www.
philipgalanter.com/downloads/ga2003_
paper.pdf

Google, M. (2019) Calibration Target
[online]. Google. Available at: https://
www.google.com/maps/@34.8511698,-
117.6572542,103m/data=!3m1!1e3

Greene, T. (2018) Someone paid $432K for
art generated by an open-source neural
network [online]. The Next Web. Available
at: https://thenextweb.com/artificial-intel-
ligence/2018/10/25/someone-paid-432k-
for-art-generated-by-an-open-source-
neural-network/

Hadler, F., Haupt, J., Andrews, T. L., Cal-
lander, A., Flender, K. W., Haensch, K. D.,
Hartmann, L. F., Hegel, F., Irrgang, D., Jahn,
C., Lialina, O., Szydlowski, K., Wirth, S., and
Yoran, G. F. (2016) Interface Critique. Berlin:
Kulturverlag Kadmos Berlin.

Horkheimer, M. and Adorno, T. W. (2007)
Dialectic of Enlightenment. 1 edition.
Stanford, Calif: Stanford University Press.

Hu, T.-H. (2016) A Prehistory of the Cloud.
Reprint edition. Cambridge, Massachu-
setts: MIT Press.

Kitchin, R. (2011) Code/Space – Software
and Everyday Life. Cambridge, Mass: MIT
Press.

Kittler, F. (1992) There is no Software. [on-
line]. Available at: https://monoskop.org/
images/f/f9/Kittler_Friedrich_1992_1997_
There_Is_No_Software.pdf

Laurel, B. (2013) Computers as Theatre.
2nd ed. Upper Saddle River, NJ: Addi-
son-Wesley Professional.

Manovich, L. (1999) Database as Symbolic
Form. Convergence, 5 (2), 80–99.

205

P o e t i c S o f t wa r e

Mansoux, A. (2017) Sandbox Culture: A
Study of the Application of Free and Open
Source Software Licensing Ideas to Art
and Cultural Production. [online]. Available
at: https://monoskop.org/images/e/ea/
Mansoux_Aymeric_Sandbox_Culture_A_
Study_of_the_Application_of_FLOSS_Li-
censing_Ideas_to_Art_and_Cultural_Pro-
duction_2017.pdf

Parks, L. (2009) Around the Antenna Tree:
The Politics of Infrastructural Visibility.
[online]. Available at: http://www.flow-
journal.org/2009/03/around-the-anten-
na-tree-the-politics-of-infrastructural-vi-
sibilitylisa-parks-uc-santa-barbara/

Reas, C. (2019) {Software} Structures by
Casey Reas et al. [online]. Available at:
https://artport.whitney.org/commissions/
softwarestructures/text.html

Reeves, B. and Nass, C. (2003) The Media
Equation: How People Treat Computers,
Television, and New Media Like Real
People and Places. Reprint. Stanford, Calif:
Center for the Study of Language and Inf.

Tenen, D. (2017) Plain Text: The Poetics of
Computation. Stanford University Press.

Ullman, E. (2012) Close to the Machine.
Reprint edition. New York: Picador Paper.

Wardrip-Fruin, N. (2012) Expressive
Processing: Digital Fictions, Computer
Games, and Software Studies. Cambridge,
Mass London: The MIT Press.

Winograd, T. A. and Flores, F. (1995) Un-
derstanding Computers and Cognition:
A New Foundation for Design. New ed.
Boston: Addison Wesley.

WinZip Computing, S.L. (2010)
WinZip Logo [online]. Available
from: https://www.pc-magazin.de/
bilder/8610089/800x480-c2/WinZip-Lo-
go-Aufmacher.jpg

Yuill, S. (2004) Code Art Brutalism:
Low-Level Systems and Simple Programs.
In: read_me, Software Art and Cultures.
Aarhus: Aarhus University Press, 120–163.

