
km0

H
ello W

orlding

Intro
Code documentation as
entrypoint/backdoor to
programming practices

Hello Worlding

INTRO0.

1 . ENTRY POINTS
`natural` READER

PROGRAMMING LANGUAGE

WELCOMING WRITING

DOCUMENTATION AS GARDENING

GETTING STARTLED

A CODE COMPANION

1 .0

1 . 1

1 .2

1 .3

1 .4

1 .5

2 . BACKDOORS
2.0

2 . 1

2 .2

2 .3

2 .4

2 .5

CODING CONTINGENCIES

DOCUMENTATION & DISTRIBUTION

REPRESENTATION SPECS

SITUATED DOCS

HELLO WORLDING

DISTRIBUTED AUTORSHIP

3 . OUTRO

Francesco Luzzana

0.0 .3 0 .0 .0

You cannot think about code without thinking also about code documentation.

Programming is like walking in a room without turning the lights on. It can be a
place you know by heart, but you still prefer to rely on some guidance, using your
hands to sense the walls, and move through the furniture without hitting your
pinkie toe. For code is the same: you usually appreciate some guidance.

Documentation can be as simple as a plain text file placed near the code.

A README.txt that invites developers to take a look before diving into the program.
Printed technical manuals have today transformed and spread into many different
shapes: wikis and platforms and websites generated with various tools, each with
particular focus and features.

This research explores two currents around documentation practices, with the

thesis that code documentation is an ideal publishing surface to create worlds

around software, and to orientate software in the world.

Current #1

Documentation broadens
participation in the making of
software: lowering barriers and
offering entry points for people to
understand and attune with code.

Current #2

Documentation as a backdoor
where to inject context into
software: to host principles in close
contact with algorithms, letting
them entangle and shape each other.

1. Two flows around code documentation: entry points and backdoors.

Even if it does a questionable job at
creating entry points, code
documentation still has a lot of potential
as a backdoor. It's a publishing surface
whose reach extends through time and
space. Time because it meets
programmers at different moments in
their lives: from the hello world till the
how to uninstall, and it influences
thinking about software continuously,
and from different perspectives. Space
because it comes in many different
possible formats, and can shapeshift to
serve different occasions: from simple
.txt files to entire websites, from coding
workshops to comments in the source
code to series of video tutorial.

The question then becomes:

can we make use of these backdoors to
infiltrate programming practices and
open more entry points from within?

Code documentation is an interface
between the code, the user, the
developer, and the world. Living close to
the source code, but at the same time
being less rigid and more expressive, it
seems to be an ideal surface to
influence software development
practices. The second chapter presents
some examples of how documentation
can be used to orientate code in the
world, addressing politics of
participation, representation, and
authorship in programming. The case
studies come from diverse realities, and
from different scales: large
collaborative projects as well as small,
personal gestures. In their multiplicity,
they show how blurred the boundaries
of code documentation are. A lack of
fixedness which in turn can be used to
mold our wishes and values into it.

A term to contextualize (and
dismantle?) in these writings is
developer. Stripping away any trace of
professionalism and formal education,
let's agree that a developer is someone
who tinkers with code. No matter what
level, nor distance, nor experience. No
matter if for work, for fun, for study.
No matter if one is actively involved in
the development of a tool, or comes
from the user perspective. Ellen Ullman
writes that programming is a disease,
but the situation is even worse: code is
contagious material, touch it once, and
you are a developer.

The nature of code documentation is to create entry points for people to participate
in programming practices. To encode and filter knowledge, and ultimately to share it
with others. This "nature", however, does not come without issues. It makes a lot of
assumptions about who's reading, expecting experts, or engineers, or dudes. Its
language is unwelcoming: too dense, too technical, very gendered and unable to
address anyone but the neurotypical-white-cis-male programmer. Documentation
requires an enormous amount of care, energy and time to be maintained, and it's
done always out of budget, always as a side project, always at the end, and only if
there's time left. The first chapter raises these points to note how often code
documentation acts as a barrier, gatekeeping access to the making of software.

sumo0.0 . 1 0 .0 .2Hello Worlding

soya1 .0 .3 1 .0 .0

H
ello W

orlding
/Entry Points

`natural` R
EA

D
ER

The series Programming Projects for Advanced Beginners by Robert Heaton
embraces this methodology. Each project offers some guidance through the
different steps involved in coding a particular application: a login system, a simple
game, a graphic filter to apply to the webcam, etc. A nice aspect of these guides is
that they don't refer to a specific programming language: they are decoupled
tutorials that leave the reader space to integrate and adapt the steps to their own
coding contingencies, while at the same time helping to build a lexicon, teach how to
search for information, read error messages and find their way around. As in
NAND to Tetris things are built incrementally. Here, however, the process is
iterative and circular, rather than linear. Implementations are put in place
provisionally, and then reiterated, replaced and developed more: new concepts are
introduced not as hard-coded procedures, but as a result of emerging problems.
The entry points here are multiple, like the spokes in a bicycle wheel. They come
from different directions and don't frame the code as a prescriptive and rigid
system, but rather as a crafted balance between different forces and needs at play.
Such kind of technical objects feel less monolithic and more approachable.

A lesson can be learned: sometimes code is about performance, sometimes is about
flexibility, sometimes is about accessibility, but rarely about all of these at once.
Programming is about balancing these different aspects depending on the situation.
Keeping this balance in mind when writing code documentation gives to the writer
room to adjust the tone, intensity and approach depending on who will be reading
these docs.

The wolf, goat and cabbage problem applied to coding.

References Linux Kernel Map
https://makelinux.github.io/kernel/map/

From Nand to Tetris
https://www.nand2tetris.org/

Programming Projects for
Advanced Beginners
https://robertheaton.com/2019/08/12/
programming-projects-for-advanced-beginners-
user-logins/

Documentation that assumes a certain type of reader can result inaccessible. The
recipient is often thought to be similar to the writer: familiar with the subject,
comfortable with technicalities, and able to cut through the precise jargon and
esoteric references offered as explanation. Ultimately (and in most cases) the reader
is someone else. This mismatch turns entry points into barriers that filter out who
can participate in coding.

Whenever too much technical proficiency is required to even read the
documentation, knowledge becomes inaccessible, and confined in the ivory tower.
Not filtering information becomes a filter to who can engage with it, a backfiring
practice that reinforces the segmentation between who is allowed in and who is
not: only the already knowledgeable ones can access, while others are kept out.
Contents need to be curated, that does not mean oversimplified or generalised, but
rather made legible.

Cultivating legibility is not an easy task, especially when it comes to computer
technology: a cards castle of abstractions built on top of other abstractions. These
abstractions are more than just metaphors: they are interconnected narratives and
intertwined plots and main characters at the same time. The purpose of an
abstraction is to function as a symbol, as a mentally manoeuvrable concept, free
from the details of its technical implementation. Yet the piling up of these structures
makes for a dense forest with no clear path to follow in sight. Programming is the
perfect rabbit hole because of the depth and complexity of each layer that makes
up the digital stack.

A deep understanding of technical
systems is of course admirable and
desirable, given the insights it can
provide into the infrastructures that
shape our everyday lives. But it cannot
be the only mode of access available.
Deep understanding comes with its own
learning curve, and it can be a barrier
for many people. Yet, many, many guides
resemble this setup: pieces impossible to
read if before one hasn't read an
equivalent illegible piece of
documentation and so on, tracing back
till the invention of the wheel.

A different kind of approach, more
modelled on the way we encounter
technology and coding in real life, starts
in the middle and tries to make sense of
its surroundings. You might just need to
make a website, for example. And you
could just start doing that, following a
guide or a tutorial. Soon questions
would start bubbling up: written from
scratch or with a framework? And
which one to choose? What about the
backend? Where to host it? On what
kind of server? Static or dynamic? And
the content management system for
uploading new material? And where do
you get the certificate for secure
connection? These things certainly are
important, but it is not really necessary
to know everything in order to put the
website online.

Programming is
provisional:
leave TODOs in
the code and
come back later.

Take a course such as the one presented by Noam Nisan and Shimon Schocken in
From NAND to Tetris, where they slowly build a programmable computer capable of
running the classic game, starting from simple NAND logic gates, in other words,
from microchips and electronics. Layer after layer, from boolean operations with 0
and 1 to registers and CPUs, from machine language to high level programming.
Here one can try to unwind the coil and start understanding programming from
scratch, but this approach is best suited to a university curriculum, and it's often
not very effective when facing real-world problems, with real-world constraints,
and real-world circumstances.

maya1 .0 . 1 1 .0 .2Hello Worlding

Linux kernel map.
 From the bottom up, every horizontal layer is a
level of abstraction that build on the previous
one.

soju1 . 1 .3 1 . 1 .0

This gendered language comes with an embedded division of roles.

Open-source software development happens through code contributions within
communities, and indeed someone submitted a patch to change the pronouns in the
documentation, proposing a neutral approach to undoing the stereotypes and
broadening the people represented by the documentation. But the patch was
rejected, and the pronouns remain. Eventually, a disclaimer was added: that the
gendered language does not mean that certain roles are best suited to men, and
that the wording is simply a way of writing clearer instructions.

Karaianni reports further discussion on the GNU mailing list, where the proposal
was rejected in favour of grammatically correct English, and because there was no
perceived need for fair representation in a technical object. As argued in Read The
Feminist Manual, the resistance against gender neutral language in technical
writing is just a pretext for refusing to waiver the priviledge of the male
programmer.

Toxic geek masculinity reinforces stereotypes such as gendered roles in
programming, and refuses to acknowledge the participation of diverse identities in
the making of software, starting with the very language and attitudes used in
writing documentation. From this perspective, documentation becomes an important
space for building community around software.

Who are we writing code
documentation for?

Who will read it?

Who are we keeping out and

who are we letting in?

Who is represented and

who feels invited and welcomed?

H
ello W

orlding
/Entry Points

P
R
O

G
R

A
M

M
IN

G
 L

A
N

G
U

A
G

ELife in code : a personal
history of technology
Ellen Ullman. 2017. New York: Mcd, Farrar,

Straus And Giroux.

Close to the machine :
technophilia and its discontents.
Ellen Ullman. 1997. London: Pushkin Press.

References

Workers leaving the
Googleplex
http://www.andrewnormanwilson.com/
WorkersGoogleplex.html

Read The Feminist Manual
Mara Karayanni. 2022. Athens, Greece:
Psaroskala Zines.

It's not just about the content and approach to technicalities, but also the very
language in which they are formulated and presented.

Historically code documentation has been aimed at a very specific audience. The
places where software used to be developed—universities, civilian and military
research labs and IT companies—were mostly populated by white dudes. This really
particular monoculture probably comes as a result of several overlapping factors:
the prohibitive costs of higher education, the concentration of fundings in really
specific parts of the Western world, a patriarchal society that didn't foster women
in technical sectors, and a racist and segregative model that systematically forced
minorities and people of colour into subaltern and menial tasks.

Ellen Ullman is a programmer and writer, one of the few women to work as a
developer in Silicon Valley in the 80s and 90s. The combination of a liberal arts
background, being a self-taught programmer, and above all being a woman, made
her the archetypal outsider in the IT industry. At the same time, this very position
granted her a unique ethnographic perspective, able to look critically at this
environment from both the inside and from the outside.

In her books, she recounts how the presence of female figures in the IT sector was
uneven: when she visited tech conventions, women were only to be found among
computer trainers and technical writing conferences, some of them in the
application development field, "high-level, low status, relatively-low payments" .
Closer to the machine: the desert. In the low valley of programming not a female
person in sight, for these [more technical conventions] are gathering of young men.
(1997, 2016)

Many episodes in her writings describe interactions with colleagues in which she is
directly attacked for being a woman who dares to enter the technical zone of
engineering. Or a client harassing her while she was working to fix his database.
Or the segregation of cheap latina workers hired to do mechanical data entry in
the area outside the mainframe room, where all the other guys were gathered.

`In this manual,
we use

when speaking
of the
programmer

or maintainer,

when speaking
of the translator,
and

when speaking
of the installers
or end users of
the translated
program.`

tofu1 . 1 . 1 1 . 1 .2Hello Worlding

Andrew Norman Wilson’s
piece "Workers leaving the
Googleplex" present this
same last situation more
than twenty years later,
with a big IT pushing
minorities towards
subaltern unskilled work.

This condition is also reflected in the pages of code documentation. Technical
manuals and software specifications have been written for—and from the point of
view of—this very specific public, populated mainly by male engineers.

Mara Karayanni researches technical documentation from a feminist perspective.
The project Read The Feminist Manual, published by Psaroskala Zine, presents an
investigation of gendered language in software manuals. A case study is about the
gettext localisation tool from the GNU community. The program provides a system
to internationalise other code, allowing developers to translate prompts and
contents in different languages other than English. It's an application that already
implies a collaboration between different kinds of knowledge (developers,
translators) in the making of software. Nevertheless, the manual begins with the
sentence:

he

she

they

kifu1 .2 .3 1 .2 .0

H
ello W

orlding
/Entry Points

W
ELC

O
M

IN
G

 W
R

IT
IN

G

Here are some examples that go in a different direction, on different scales.

p5.js is a popular Javascript library started by the artist Lauren McCarthy as an
online port of Processing, itself being a project to promote both software literacy in
the visual arts, and visual literacy in software development.

The documentation work around p5.js provides entry points into the world of
programming, being careful not to take too much for granted. For example, the
amount of care and effort in their tutorial about debugging, results in a welcoming
article with multiple levels of accessibility. Here the drawings help to visualise
complex concepts, the tutorial format is beginner-friendly, and the narrative makes
for an interesting reading even for those already familiar with debugging.

One of the most frightening aspects of programming is being confronted with stack
trace errors: when things don't work as expected and red error messages appear.
These scarlet letters delivered by the code are useful for developers to identify
where in the program the error occurred, but they are often dense with technical
jargon and difficult to decipher: a worst-case scenario for beginners. The
explanations from the p5.js Education Working Group tackle on this nightmare
showing not only how to read technical errors, but how to think through them with
different debugging methods. From here, the stack trace starts to become less alien
and scary, less like a wall and more like a starting point for fixing the error.

Another reflection on entry points and gatekeeping comes from the English artist
and writer James Bridle. Their practice explores the cultural and environmental
impacts of digital computation, walking and jamming the fine line between what is
shown and what is kept hidden in the technological landscape we live in.

When you open the browser inspector on the Facebook website, you are confronted
with a wall. A message printed in the console prevents users from accessing the
page's hidden structure. The platform adopted this approach to prevent scams and
self-XSS attacks on its users, who could have been tricked by malevolent people
into running malicious code in their own browsers. However, instead of encouraging
its user base to understand, explore and ultimately feel safer against these cyber-
attacks, the company opted for a full stop, marking a clear line between users and
developers.

welcome.js (2016) is a small gesture in response, a tiny javascript library published
open source on GitHub under a permissive MIT license, where Bridle injects some
greetings into their website (and in all the websites that include the library) to
welcome users to the browser inspector. The artwork is hidden below the surface
of the website, printed in the console of the browser inspector, a tool that allows
users to see the underlying code of the website they are visiting. From here it
provides some guidance for newcomers to access, inspect and modify the source
code of web pages. A process that opens doors and lets people in, giving them more
agency by demistifying technology.

Whether in a large project or a small gesture, attention to language can be
transformative. In code documentation it can help deconstruct the false dichotomy
between programmer and user, or pro and newbie. It can create spaces that feel
safer, where people are invited to participate, express themselves and contribute to
the community. It can help undo the impostor syndrome that affects many
programmers, and that feeds on some hidden and inaccessible fundational
knowledge that is nowhere to be found in code documentation. It can help shed
some light on the massive amount of work that goes into the making of software:
recognising all contributions, not just those of engineers.

RTFM
http://readthefuckingmanual.com/

Life in code : a personal
history of technology
Ellen Ullman. 2017. New York: Mcd, Farrar,

Straus And Giroux.

Debugging
https://p5js.org/learn/debugging.html

welcome.js
https://github.com/stml/welcomejs

https://p5js.org/learn/debugging.html

Programming means dealing with picky
stubborn machines that won't overlook
a single typo. It requires a high
tolerance for failure. It is frustrating.
But to project that frustration onto
other users, as in the typical response
to a request for help of Read The
Fucking Manual, is a form of negative
solidarity: others should suffer as I have
when trying to understand how code
works. Mark Fisher used the image of
negative solidarity in the context of
labor under capitalism, where workers
are forced into precarity and isolation.
Here as in a downward auction, people
are driven to bring each others down,
to wish to others their same struggles.
(2013) I'm using it with a focus on the
emotional component: not only the lack
of empathy and solidarity, but also the
reproduction and legitimisation of toxic
behaviours in coding communities.

When all the energies are invested in
optimisation and debugging, in
considering and solving only techical
problems, and no space is left for
introspection, programmers start to
behave like machines. This lack of
empathy is a barrier to the
participation of others in the

making of software.

coconut1 .2 . 1 1 .2 .2Hello Worlding

Writing
documentation

is demanding.

It's more delicate than programming,
and requires a whole set of skills not
usually treasured by the dev
community. A kind of emotional
intelligence and sensitivity that is far to
be found in the competitive and
pragmatic wastelands of the IT
industry. Nobody here wants to write
documentation, or pay anyone to do it.
As a result, in a world where software
thrives, documentation still seems to be
a scarce resource.

A provocative post with slightly austrian accent
on Mastodon

It's ok, someone could argue, every question that can be asked on Stack Overflow,
will eventually be asked in Stack Overflow (versioning Atwood, 2007). The popular
Q&A website for developers is just an example of digital knowledge as a shared
effort, together with the endless mailing lists, forums, discord servers and dedicated
sources for whatever topic. It's astonishing how online communities can tackle any
problem in no time.

But it's not rare for these places to feel unwelcoming, or even hostile. In 2018, Stack
Overflow publicly admitted that it had a problem with its user base. The space felt
unfriendly for outsiders, such as newer coders, women, people of color, and others
in marginalized groups (Hanlon, 2018).

There have been discussions about tone on the platform for years. At the question
"Should 'Hi', 'thanks', taglines, and salutations be removed from posts?", one of
Stack's founders responded with a RegEx to automagically find & remove what
some of the experienced users perceived as noise. This regular expression, a way of
targeting specific text patterns in programming, then began to be silently applied to
every request sent to the website, trimming out etiquette and leaving only
technicalities.

Far from being just an isolated problem, this crudity is deeply embedded in the IT
discourse, soaking through technical writings as well. The denigrating expressions
of superiority in matters concerning programming which Marino calls encoded
chauvinism (2020) constitute the main ingredient in the brew of toxic geek
masculinity. Real programmers don't use that code editor. Real programmers don't
use that programming language. Real programmers don't care about others
feelings.

Ellen Ullman's accounts of the emotional dumbness of her real programmer
colleagues offer a glimpse of a problematic behaviour, that was first intercepted
and then capitalised on by the IT industry.

`In meetings, they behave like children.

They tell each other to shut up. They call
each other idiots. They throw balled-up
paper. One day, a team member screams
at his Korean colleague, 'Speak English!'

(A moment of silence follow this outburst,
at least.)` (Ullman, 2017)

Atwood’s Law
https://jayaprabhakar.medium.com/rethinking-
atwoods-law-64a894b54aa4

Stack Overflow Isn’t Very
Welcoming. It’s Time for
That to Change.
https://stackoverflow.blog/2018/04/26/stack-
overflow-isnt-very-welcoming-its-time-for-that-
to-change/

Should 'Hi', 'thanks', taglines,
and salutations be removed
from posts?
https://meta.stackexchange.com/questions/2950/
should-hi-thanks-taglines-and-salutations-be-
removed-from-posts/93989#93989

Critical code studies.
Mark Marino. 2020. Cambridge, Massachusetts:
The Mit Press.

Suffering With a Smile

Mark Fisher
https://theoccupiedtimes.org/?p=11586

References

https://meta.stackexchange.com/a/93989
https://meta.stackexchange.com/questions/2950/should-hi-thanks-taglines-and-salutations-be-removed-from-posts
https://meta.stackexchange.com/questions/2950/should-hi-thanks-taglines-and-salutations-be-removed-from-posts
https://meta.stackexchange.com/questions/2950/should-hi-thanks-taglines-and-salutations-be-removed-from-posts

sbafo1 .3 .3 1 .3 .0

If a project is larger and more
articulated, the need for more
comprehensive and structured formats
arises. Wikis, websites, forums: all these
platforms imply more work:
maintenance, design and sometimes
even guidelines and documentation for
the documentation itself.

Writing docs is not a once in a lifetime
effort, but an ongoing commitment. It's a
process with its own pace and timing,
and much like gardening, it's a form of
care both for the code and for the
community around it.

It's a process that requires a massive
amount of energies and resources. Yet,
it seems to be constantly
underestimated, undervalued, and
pushed to the margins. Something left
for when there's nothing better to do,
something to delegate. Something
perceived as a burden, as a killjoy, a
display of weakness by real
programmers who should be able to
understand a program by reading

its sourcecode.

All these efforts are a good illustration
of what advocated in the Post-
Meritocracy Manifesto by Coraline Ada
Ehmke and more than other six
hundred signatories: making software is
not just a matter of technical skills, but
of interpersonal relations and social
dynamics, where all contributions
around code are important as those one
on the code itself.

Documentation is a surface where all
the sociality, relationships, and context
around code are rendered visible. An
interface between the technical world
of machines, the affective sphere of the
community, the delicate and demanding
economies of open source projects, and
the politics of distribution, circulation
and participation in the making

of software.

A surface that in turn can be activated
and used as a platform to reach out to
all the different actors around it.

Making software
is not just a
matter of
technical skills,
but of
interpersonal
relations and
social dynamics,
where all
contributions
around code are
important as
those one on the
code itself.

H
ello W

orlding
/Entry Points

D
O

C
U

M
EN

T
AT

IO
N

 A
S G

A
R

D
EN

IN
GThe Post-Meritocracy

Manifesto
https://postmeritocracy.org/

References

If the docs does not reflect the
behaviour of the project, or if there are
discrepancies between the two of them,
the reliability of both code and
documentation is undermined. Code
documentation requires as much
maintenance as the code itself. Code
transforms and documentation should
follow.

There's a multitude of ways in which
changes to the codebase affect the
documentation. New features require
new sections. Breaking changes with
previous versions require warnings and
instructions on how to migrate to the
new one. Bugs and unexpected
behaviour need to be addressed.
Deprecated functions must to be
trimmed out, or marked as outdated.

In addition to the technical aspects, the
editorial work needs to be taken into
account. Adjustments and corrections
and line-editing, clarifications of
convoluted paragraphs, rephrasing of
confused sentences, highlighting of
important passages. Some projects
support internationalization, and the
contents are translated and adapted to
different languages' structures.

lima1 .3 . 1 1 .3 .2Hello Worlding

Frustrated
 developer apparently busy w

ith
 tech

nical w
riting

jamon1 .4 .3 1 .4 .0

Vue.js
https://vuejs.org/guide/essentials/
lifecycle.html#lifecycle-diagram

Padliography
https://git.xpub.nl/kamo/pad-bis

References Soupboat
https://hub.xpub.nl/soupboat/

XPUB and Lens Based wiki
https://pzwiki.wdka.nl/mediadesign/

Aesthetic Programming
https://aesthetic-programming.net/

H
ello W

orlding
/Entry Points

G
ET

T
IN

G
 ST

A
R
T
LED

Consider the diagram created for the Padliography, a bookmarking system for
collecting links of otherwise scattered Etherpad documents. It not only describes
what's going on in the code, but also taps into its surroundings: the Soupboat
server and the XPUB and Lens Based wiki.

The introduction to a program situates it within a larger ecosystem: how to install
it, and what dependencies it requires to work properly. As Geoff Cox and Winnie
Soon elaborate on their decision of a downloadable code editor rather than a web-
based one for their classes, code is more than just a single piece of software. It is
also the relations with the configuration of one's own computer and operating
system. (Cox and Soon, 2020)

Their book Aesthetic Programming - A Handbook of Software Studies, is an
example of how documentation can be a loom for weaving together technical and
critical thinking. The book explains basic concepts of programming, starting from
variables and loops, and moving on to more complex topics such as machine
learning and speech recognition. The technical curriculum on offer is in line with
other similar resources aimed at beginners. What's different here is the
commitment to critically enquiry themes such as colonialism, racism, gender and
sexuality, capitalism and class, and how are they embedded in code. Soon and Cox
prepared these lessons for students enrolled in a design institution, and curated the
publication for a public familiar with software studies discourses. Thanks to the
vantage point of writing documentation for beginners, they could be super-explicit
and go all out with a generous amount of references.

For hatching programmers, the initial imprinting of documentation is a powerful tool
to orientate code in the world.

Lifecycle and ecosystem of Padliography: a wiki-powered link bookmarking system.

bruja1 .4 . 1 1 .4 .2Hello Worlding

Reading undocumented code feels like being an ant walking on a big painting. You
can see the brush strokes and have a sense of their direction, but what's missing is
an overall idea of how the composition flows. Documentation provides a bird's eye
perspective on the bundle of functions and statements that make up software.

It is often the first thing one gets across when approaching a new library or
programming language, and it shapes the way a developer thinks about a
particular piece of code.

At the very first encounter with a new script, details about its source code are
unknown. Programming is a play in medias res, and documentation acts as narrator.
By describing how functions are stitched together, or an algorithm is implemented,
it sets the stage for developers to participate. By showing the different steps of a
program and how they are connected, it offers entry points for intervention.

In the previous page:

Diagram of a Vue instance lifecycle,

illustrating the different entry points

of the template design pattern.

C
o

d
e d

o
c

u
m

en
t
at

io
n

 is n
o

t

ju
st

 p
u

r
e in

t
r
o

sp
ec

t
io

n
.

수박 su bak1 .5 .3 1 .5 .0

References Diátaxis
https://diataxis.fr/

H
ello W

orlding
/Entry Points

A
 C

O
D

E C
O

M
P
A

N
IO

N

Or rather,

the same documentation, for the
same reader, for the same code,
just at different moments in their
life. Programmers' needs change

over time, as do the answers they
are looking for, but still, they keep

returning to read the docs.

Diagram with the Diataxis framework

eipo1 .5 . 1 1 .5 .2Hello Worlding

The devil is in the details, and software as well: the translation between human and
machine has to be negotiated with all the specifics of a particular programming
language or platform. Sometimes for the web, sometimes for a hardware
component, sometimes for another operating system. These specs make every piece
of code a bit alien and peculiar. Tinkering with code is not just about knowing a
programming language by heart, but rather having to deal with a lot of different
recipes for different occasions, and know how to adapt.

They are continuously looking at code from multiple distances: close to the source
code through lines of comment, or from printed books, along with pages of
explanations and use cases. This tentacular surface can reach a programmer at
different moments of their life: from the hello world to the how to uninstall. This is
possible thanks to the variety of forms that documentation can take: video tutorials
and commands cheatsheets, README files and complete guides featuring diagrams
and drawings.

Daniele Procida proposes a systematic approach to organise this wealth of formats
(2017). His framework focuses on the needs of different types of readers: by
leveraging between practical steps and theoretical knowledge, he charts four main
modes of technical writing. Each format has its own approach and intentions, and
answers different questions.

Documentation is not just for
beginners: it's a code companion.

You never stop reading it.

Even experienced programmers
must consult the docs when first

encountering a software, and
return to it when they need a
refresher on the syntax of a

particular command.

A text that
doesn't consider
who's reading it
can result
inaccessible and
frustrating.

Although the Diataxis framework
doesn't encompass every particular
situation, its structure is a good aid to
situate documentation within different
perspectives. This turns out to be very
helpful in the writing process, as a way
of fine-tuning tones, and modulating the
nature of shared information. Tutorials
open entry points for the newcomers,
while explanations unveal core
mechanisms for more navigated
readers. How-to guides teach how to
get the work done, while references
report lists of information ready to be
consulted. Different documentations for
different readers for the same code.

kodwo2.0 .3 2 .0 .0

References Software studies a lexicon.
Fuller, M., ed. (2008). Cambridge, Massachusetts
Mit Press.

H
ello W

orlding
/B

ack
doors

C
O

D
IN

G
 C

O
N

T
IN

G
EN

C
IES

Code as an object that, in turn, can
be used to probe its surroundings.

Who is developing?

Who is going to use it?

Who pays for it and why?

How is it structured?

Is it a big and centralized system,
or a loose collection of small and
interchangeable tools?

How long is it supposed to last?

How can it be fixed if it breaks?

The main focus of this chapter is to
explore software documentation as
a surface where these kinds of
questions can be addressed. A
place where the complexity of code
doesn't blackbox ideas, and choices
behind development can really be
open source.

A way to situate programming in
specific contexts, but also to inject
our contexts into programming
practices. Hence the idea of code
documentation as a backdoor: a
passage to infiltrate software
culture, to change things from the
inside and create more

entry points.

yassu2 .0 . 1 2 .0 .2Hello Worlding

How do you choose a particular
programming language, a coding
paradigm, a development
environment, an infrastructure
where to run the code, and so on?

These are not just technical
choices, but rather coding
contingencies.

It may depend on the IT curriculum
in a public school, on the job
requirements for working in a tech
company, because of an Arduino
board got as gift for birthday, or a
colleague who is passionate about
experimental music and drags you
to a live coding concert.

These contingencies are situated in
specific contexts.

Programming then is not just
sharing code, but sharing context.
A significant statement about our
relationship to the world, and how
we organise our understanding of
it. A perspective for looking at
reality, before attempting to get
some grip on it with a script. A
way of dealing with both the
software and hardware
circumstances of code, but also
engaging with the sociality and
communities around it.

It's an approach
that helps us to
think about
software as a
cultural object.
Something

`deeply woven into
contemporary
life

–economically,
culturally,
creatively,
politically–

in manners both
obvious and
nearly invisible.`

Fuller, Manovich and Wardrip-Fruin,
2009

and not just as
technical tool
existing in a
vacuum.

verso2 . 1 .3 2 . 1 .0

References

H
ello W

orlding
/B

ack
doors

D
O

C
U

M
EN

T
AT

IO
N

 &
 D

IST
R

IB
U

T
IO

N

A Wishlist for
Trans*femminist Servers
https://etherpad.mur.at/p/tfs

Feminist Server Manifesto
https://areyoubeingserved.constantvzw.org/
Summit_afterlife.xhtml

Queer Motto API
https://gitlab.com/siusoon/queer-motto-api

retto2 . 1 . 1 2 . 1 .2Hello Worlding

Rethinking participation in coding practices from femminist perspectives does not
mean simply swapping who can join and who cannot. This would only reproduce
current forms of exclusion and polarisation. It also doesn't mean committing to an
overexert openness, accepting everything and everyone, and potentially
endangering safe spaces.

The Wishlist for Trans*femminist Servers engages with a more messy, entangled,
complex way of understanding participation and technology. A way to open up to
plurality, to questioning, to instability, to consent, to situatedness. Iterating from the
Feminist Server Manifesto, it offers prompts to embrace coding within
contradictions: not as a moral setback, but rather as an ongoing labor, striving for
a different tech for this world, and for different worlds.

These principles are reflected in the documentation of the Queer Motto API, a
software as a service commissioned by transmediale in 2020-2021 and developed
by the Queer Service team (Winnie Soon, Helen V. Pritchard, Cristina Cochior, and
Nynne Lucca). The project challenges the idea of software as a smooth, always-on
service, with a motto generator that sometimes refuses to work, takes a nap when
it needs to REST, or goes on strike to celebrate important days like the 8th March.

The Queer Motto API is published in the form of an Application Programming
Interface (API), an online service that other developers can request from their
applications to use generated feminist motto. By being released as an API, the
service is inherently linked with other projects, such as the Transmediale website,
that uses it to display a new motto every day. Who wants to use the API has to
agree to the terms and conditions, which are detailed in the documentation
available in the project repository. The readme offers an understanding of the
various technical moments and aspects involved in interacting with a typical
software-as-a-service, but narrates them from a feminist perspective. Error codes,
service availability, consent and refusal, request and response, token policy, and all
the terms neutralised by the normativity of everyday tech, are reactivated here as
powerful narrative (and subversive) devices.

One example is the paradigm of the constant availability of the server. Behind
every SaaS there are always a server: the so-called someone else's computer
working behind the scenes. The seamless cloud picture of big tech rarely includes
these machines, which are abstracted and hidden from the user. Instead, in the
Queer Motto API, the presence of the server is a key aspect, especially when it
decides to take a nap or refuses to work because it is on strike. These behaviors
are documented with various error codes, giving developers using the API a way to
make their applications react accordingly, and even join the cause.

misto2 .2 .3 2 .2 .0

References p5.js
https://p5js.org/

flask-boat
https://git.xpub.nl/kamo/kamo-soupbato/src/
branch/master/templates/project.html

Alt-text as poetry
Bojana Coklyat and Shannon Finnegan

https://alt-text-as-poetry.net/

H
ello W

orlding
/B

ack
doors

R
EP

R
ES

EN
T
AT

IO
N

 S
P
EC

S

Inspired by Alt-text as poetry, I decided to write the code for my Soupboat pages in
such a way that images would not be displayed unless they were accompained by a
text description. An implementation aimed at slowly training and sensitising myself.

However, an implementation-first approach is not always an option, and code
documentation is a more expressive surface to work with. The p5.js library, for
instance, exposes a describe() and describeElement() function, to
provide a description analogue to the alt text one for your visual sketches. The
interactive graphics are based on the HTML canvas element, which work on a pixel
basis rather than semantically like HTML. Like images, this content is not
compatible with screen readers, and requires textual explanation to make what's
happening on the display accessible. Even more: while images are usually static,
p5.js visuals are often in motion, evolving over time. With describeElement(),
developers can be even more granular in their descriptions, captioning the
transformations of different elements in their animations.

In the discussions surrounding the development of this open source project,
contributors began to consider how to encourage the use of this feature. From an
initial suggestion to make it a requirement for Sketch to run, opinions settled on
conveying its importance from the documentation, by adding it to the default
template, and to the examples in the documentation and tutorial.

{% if cover and cover_alt %}

 <figure class="header--cover">

 <img

 src="{{url_for('static', filename='img/' + cover)}}"

 alt="{{cover_alt}}"

 />

 </figure>

{% endif %}

Code for the project pages on the Soupboat. The figure is added if and only if both cover and alt
description are provided.

Examples from p5.js documentation

fritto2 .2 . 1 2 .2 .2Hello Worlding

Alt-text as poetry is a project by Bojana Coklyat and Shannon Finnegan: a
workbook dedicated to the alternative text descriptions that make web images
accessible to people who are blind, with a low vision condition, or have other
cognitive disabilities.

Websites are made of HTML, a markup language based on tags. Each tag
represents an element of the document: a header, a paragraph, a link to another
page, an image, and so on. As in a sandwich, these tags can be composed together,
and organized to structure the contents of a web page. Every tag comes with
particular attributes, and the image one requires the developer to specify the
source src of the picture to display. Here is also possible, but not technically
mandatory, to add an alt attribute, with the alternative description of the image
used by screen readers and other assistive technologies.

Alt-text is an essential part of web accessibility. It has existed since the 1990s, but
it is often disregarded or understood through the lens of compliance, as an
unwelcome burden to be met with minimum effort. By design, the HTML
specifications treat it as optional. While omitting the source src of an image will
preclude it from being displayed, the same is not true for the absence of an alt text.

The Cocklyat and Finnegan workbook is an entire piece of code documentation
dedicated to a single HTML attribute. It re-frames alt text as a kind of poetry, and
provides exercises to practice writing it. Its intention is not only to enable alt-text
users to be able to access visual content on the web, but also to let them feel a
sense of belonging in the digital spaces. By highlighting the needs of often
marginalised minorities, and giving them proper representation, documentation can
activate ways of thinking that actively shape technical implementations, recognising
not only the needs of machines, but programmers and users as well.

Alt-text as poetry workbook, and relative image tag with alt description

<img src="img/workbook.jpg" alt="Big text fills the
cover: ALT-TEXT AS POETRY. Each letter is made of
repeated round shapes. The cover is printed on a subdued
green paper, the inside pages are a soft white color,
and the whole book is bound with a plastic, forest green
spiral coil.">

Documentation

and technical
implementations
influence each other
in a feedback loop.

The power of code
documentation to
encourage a
particular set of
practices molds
subsequent
implementations,
which in turn
consolidate and
normalise previous
choices.

Here technical and
design choices can
create or foreclose
spaces for others

to participate in
programming
practice.

Of course, this
process doesn't
happen in a
streamlined and
linear fashion, but
rather as a bouncing
and transversal
echo that reaches
neighbouring
contexts and other
projects.

ubu2.3 .3 2 .3 .0

H
ello W

orlding
/B

ack
doors

SIT
U

AT
ED

 D
O

C
SFrom the perspective of hosting others into "our" code, documentation becomes a

form of hospitality. A form of care for a shared space. In XPUB, each group begins
its two-years programme by setting up a self-hosted server. We called ours
Soupboat, and it houses many of our prototypes and experiments. This small server,
running on a Raspberri Pi, feels like a place to call home on the internet. Over the
past two years we have done all sorts of projects there: generated web-to-print
publications, custom CMSs to manage birthdays, Etherpad documents, and soup
recipes, workshops, personal wikis, and so on. While living on a server with others,
my approach to code began slowly to change. Publishing open git repositories,
instead of hiding behind private ones. Writing more readme files to be more
generous with friends and colleagues and tutors. Cultivating small gestures and
rituals, like leaving comments in config files to remind others where to mount the
next app or where to find some credentials.

At the same time, this awareness grew by acknowledging the particular context of
this small setup, of this situated software (Shirky, 2004). In many readme for
example, such as the one for the networked drawing app drw or the padliography,
the explanations are tailored specifically for the Soupboat, and they cannot
probably be ported 1:1 somewhere else. Nonetheless, the space is prepared for
hosting new guests.

This is where the interesting friction of situated documentation arises: how to share
knowledge about deeply situated programming practices with other contexts? How
to remain legible and accessible, for ourselves and for others, while at the same
time preserving specific and characteristic decisions? Usually documentation doesn't
take into account the messiness of coding contingencies, where multiple software
coexist on the same server and configurations conflict or are installed with different
setups. Collective learning moments and small, shared rituals can bridge the gap
between the default setup described in documentation and a real-world,

situated one.

Soupboat, the server of our XPUB group. With 3d printed legs to run faster.

https://hub.xpub.nl/soupboat/
https://git.xpub.nl/kamo/drw
https://git.xpub.nl/kamo/pad-bis

cacho2.3 . 1 2 .3 .2Hello Worlding

Injecting context in software requires operating at different scales. Within both
public and private dimensions, within technical and social frameworks. In a
workshop for example, people meet face to face. Here, togetherness can glue
together technicalities, questioning the reproduction of knowledge and its

power dynamics.

Code documentation is transmission of knowledge, traditionally conceived as a
vertical and centralised practice, where who teaches and who learns are on
diametrically opposite sides of the spectrum, in well-defined roles. From this
perspective only the real programmer, the expert that detains a phantomatic
foundational knowledge, is allowed to share wisdom and document code.

As argued by Kit Kuksenok during the activation of their workshop Sharing
Programming Knowledge at Varia (Rotterdam), things are more fluid than that:
everyone is sometimes a learner, and sometimes a teacher. Each role brings
valuable insights to the counterpart, and taking them into account open the way to
other pedagogical and organisational tactics for sharing knowledge. One example
are collective learning moments, situations where code documentation is both active
practice and shared, horizontal surface.

360 degrees of proximities is a project emerging from a network of feminist
servers that addresses the problem of invisible labour typically associated with the
maintenance of digital infrastructure. After sucessfully setting up of a self-hosted
Peertube instance, a federated platform for sharing video content, the group began
to question aspects of maintaining the system. Rather than centralising the service
in a self-exploitative scenario, they decided to redistribute responsability across the
network, working with other feminist and queer communities and empowering them
to build their own video platforms autonomously, but in a joint effort.

This is where different knowledges meet: on one hand the know-how about
installation and configuration of Peertube brought by the 360 team, and on the
other site-specific knowledge of the hosting server.

Eventually you want to put
online your drawing app.

To be able to use this app
on the Soupboat (or other
servers connected in the
hub.xpub.nl ecosystem)
some additional
configurations are needed.

Note that the following
details are tailored to
the particular case of our
server.

Other instances could
require different setups.

This is one possible
workflow.

Clone the repo and install
the requirements as you
would do locally.

git clone https://

git.xpub.nl/kamo/drw

cd drw

npm install

Notes from drw's readme.

labsong - songs for difficult grad labor

location ^~ /labsong/ {

 proxy_pass http://localhost:3157/soupboat/labsong/;

 include proxy_params;

 }

ATTENTION: use port 3158 for the next project!!!! ;))

NGINX configuration with gentle, incremental reminder on which port to use for the next app
References

Sharing Programming
Knowledge
https://ksen0.github.io/

360 degrees of proximities
https://systerserver.net/360/caladona/#en

Soupboat
https://hub.xpub.nl/soupboat/

drw
https://git.xpub.nl/kamo/drw

Padliography
https://git.xpub.nl/kamo/pad-bis

fomo2.4 .3 2 .4 .0

In the essay Chimeric Worlding, researcher and designer Tiger Dingsun explores
what graphic design can learn from poetics to escape a condition of pure
functionalism. Graphic design and code documentation are similar: both deal with
the organization and presentation of information, making meaning through the
configuration of different elements, which are not just limited to language and text,
but can also include images, symbols, (code snippets, examples). With a find&replace
to swap all occurrences of graphic design to code documentation, Dingsun's essay
can be versioned to get an interesting perspective on what's happening in the
Screenless Office.

In the essay, they highlight how poetry often provides a rich context and a world
for a work to live in, while software documentation often does not. A poetic practice
of world-building would benefit code documentation allowing for multiple potential
narratives to sprawl out nonlinearly, validating them, and inviting questioning code's
surroundings. By doing so, it would offer points of resistance to the smooth flow of
capital, that relies on a singular, totalizing interpretation of the world. Hence the
idea of chimeric worlding: to provincialize code documentation with multiple and
situated ways of structuring knowledge, leaving open ended spaces for others to
participate.

In the Screenless Office, the bureau aesthetic, with its cast of characters,
situations, and power dynamics, becomes a personal interaction design framework.
Here the system is structured enough to articulate a complex application in a
coherent, clear and legible way. And yet, the cosmology of the office remains open
to contributions coming from elsewhere, for example the addition of another
department such as the Canteen of the Screenless Office inaugurated during a
workshop with Howell at XPUB, with our own peculiar set of characters, aesthetics
and documentation practices.

H
ello W

orlding
/B

ack
doors

H
ELLO

 W
O

R
LD

IN
G

References

The Screenless Office
http://screenl.es/

the-screenless-office
https://gitlab.com/bhowell/the-screenless-office

the-screenless-office
(XPUB)
https://git.xpub.nl/kamo/the-screenless-office

Chimeric Worlding
https://tdingsun.github.io/worlding/

sabu2.4 . 1 2 .4 .2Hello Worlding

The Screenless Office is an artistic operating system designed by Brendan Howell
and Mikhail Pogorzhelskiy to reimagine personal computing away from pixel-based
displays, using radically alternative forms of everyday human interaction

with media.

Similar to other operating systems, the Screenless Office can be used to read news,
browse websites and interact with social media. What's different here is that the
surface on which all these exchanges take place is not a screen, but rather an
articulated ecosystem of thermal and laser printers, barcode scanners and other
interconnected physical devices that can be plugged in as required.

The first interaction with the Office prints out a menu of available commands, in the
form of a list of functions with associated description and barcode. From here you
can scan the barcode to read the news, for example, and get web-to-printed a feed
with the latest stories. Each item in the feed is a snippet of an article scraped from
several online sources, and can be scanned again to print the full version.

In an interface culture dominated by few corporate players and crystallized on
touchscreen glass, the project offers multiple gestures for interaction, as opposed to
the single act of scrolling. Furthermore, instead of sitting in front of a screen with a
singular, centered, and linear perspective, the user displaces the office all around
through printers, scanners and printed materials. Here code documentation plays a
key role in orchestrating all these different interactions.

Sample from jokes.py, the module of the Department of Humor. Here two docstrings describe the
bureau itself and the Fortune Cookie command.

In the previous page:

Menu printed by the Inhuman Resources bureau using
the docstrings from the other offices. 4-4-2022
Workshop with Brendan Howell at XPUB

The system is written in Python, and its
code documentation consists mainly of
docstrings and comments written
directly in the source. A docstring is a
piece of text written at the very
beginning of a function to document it.
Unlike normal comments, which are
usually removed from code at runtime,
docstrings are preserved, and can be
consulted with interactive help systems
or used as metadata. Many
programming languages support this
pattern, which is often used to produce
automatic pieces of documentation
simply by collecting and listing all the
functions and their descriptions.

In the project these are used to create
a world around the code and its
structure: in the initial menu, for
example, they are the settings for the
Screenless Office. Reading them, we
discover how the office is organised into
different bureau, each dedicated to a
specific task. The Pubblications Office
deals with the daily news and the
weather forecast, the Public Relations
department manages exchanges with
social platforms, the Audio Service
Dept. provides the soundtrack, and so
on, while the Inhuman Resources bureau
keeps track of them all.

class Humor(Bureau):

 """

 This bureau entertains the modern worker and provides colorful

 bons mots for managers who need to warm up an audience.

 """

 name = "Department of Humor"

 prefix = "HA"

 version = 0

 def __init__(self):

 Bureau.__init__(self)

 @add_command("joke", "Fortune Cookie")

 def print_fortune(self):

 """Prints a clever quip."""

 jux = str(subprocess.check_output("/usr/games/fortune"))

 self.print_small(jux)

fomo2.4 .3 2 .4 .0

H
ello W

orlding
/B

ack
doors

D
IST

R
IB

U
T
ED

 A
U

TO
R

SH
IP

sabu2.4 . 1 2 .4 .2Hello Worlding

Learning How to Walk while Catwalking is a collective project we developed in the
context of Special Issue 16. It is published as an API that provides a toolkit to
explore natural language processing in a vernacular way. It makes available several
endpoints to experiment with text transformations in a playful way, from simple
operations like repeating or filtering certain words from a string, to more
articulated functions to annotate images, or use words like etc and ... as containers
to continue unfinished lists.

Tipically an API's architecture is centralised: there's a grand scheme and
everything has to fit into it, both code- and documentation-wise. Documentation
guidelines such as the Diataxis framework, recommend maintaining a consistent
tone and offering a single source of truth for navigating the codebase. These
prompts are certainly helpful in preserving legibility, but little they reveal about the
inherent distributed autorship of code.

SI16 has been a space for undoing the grand scheme and let a plural, vernacular
autorship to emerge. On the server side the API is structured as a filesystem, and
to insert a new function it's enough to upload a Jupiter Notebook file containing the
script and its documentation. Jupiter Notebooks are interactive documents in which
code snippets and their explanations can be interwoven. They come handy for
prototyping and documenting learning processes, writing code to be read not only
by computers, but also by other programmers, in a paradigm also known as literate
programming, introduced by Donald Knuth in 1984.

The title of the project was a declaration of intents: when approaching the
technical be confident, be ambitious, and be ready to fail a lot. With these notebooks
we were able to keep different voices visible in the documentation, to question a
rigid and centralised structure, creating space to document and code from

multiple perspective.

Endpoint

An endpoint is a location where the API
receives requests for specific resources,
usually in the form of an URL.

An example of endpoint is:

https://hub.xpub.nl/soupboat/

si16/api/repeat/?

text=hello×=3

that call the repeat function in the
server, passing a text to repeat `hello`

for 3 times

References

Learning How to Walk while
Catwalking
https://issue.xpub.nl/16/

—Manifesto
https://hub.xpub.nl/soupboat/si16/intro/

—Toolkit
https://hub.xpub.nl/soupboat/si16/functions/

Chimeric API
https://hub.xpub.nl/soupboat/~kamo/projects/
api-worldbuilding/

On the other side:

1. Soupboat server. Jupyter Notebook of the repeat
function. On the left panel the filesystem with the
other function files.

2. Documentation generated from the Notebook files
for the Repeat function. Name, description, input and
output are read from the function definition

and docstring.

3. Documentation of the Repeat function. A part from
the function definition that is somehow structured, all
the remaining part of the Notebook is freely written
in Markdown and Python, a simple and

expressive combination.

km0

H
ello W

orlding

O

utro
Thesis submitted to

Department of Experimental Publishing

Piet Zwart Institute - WdKA

in partial fulfilment of the requirements for the final examination for the degree of:

Master of Arts in Fine Art & Design:
Experimental Publishing

Adviser:

Marloes de Valk

Second Reader:

Lidia Pereira

Code documentation as
entrypoint/backdoor to
programming practices

Hello Worlding
Francesco Luzzana

3.0 .3 3 .0 .0

Francesco Luzzana, km0, sumo, tofu, maya et all the other aliases. 2023

Copyleft with a difference: This is a collective work, you are invited to copy,
distribute, and modify it under the terms of the CC4r

https://constantvzw.org/wefts/cc4r.en.html

https://constantvzw.org/wefts/cc4r.en.html

Documenting code is a rich and diverse practice, with a variety of forms and
formats suited to specific occasions and needs. These different publishing surfaces
are still affected by several problems, such as a general unappealing and
unwelcoming tone, dense and gendered language, and a massive amount of energy,
resources and time required for maintenance. These critical aspects highlight how
problematic the supposed "nature" of code documentation is. A nature that instead
of creating entry points, essentially gatekeeps access to programming knowledge.

There is another way in, however. Because of its proximity to the code and its
ongoing relationships with programmers, code documentation can be a backdoor
into communities gathered around coding, opening up more entry points from within.
Code documentation can be used to orient software in the world, operating at
different scales and in several ways, working with both technical and social
frameworks. It can retrace genealogies to activate exhausted technical terms.

It can influence technical implementations by representing the needs of
marginalised minorities. It can be a moment of collective learning, challenging
traditional reproduction of knowledge, and creating safe spaces for anyone to
participate to code.

I started this research for of two reasons: the first is that I love programming.
Learning how to code is like learning another language: not just a new bag of
words and a different grammar, but a whole new way of thinking, a lens through
which to look at the world. Coding means to express ideas with the reduced
vocabulary of a programming language. As in poetry, these constraints stimulate
creativity, and encourage a diligent yet playful approach. Working with different
programming languages and on different systems transforms thinking in
multivarious ways, and that is extremely exciting.

The second reason is that I want to share this excitement with others, especially
with my friends. To be able to think and make sense together of what's happening
around us, and come up with alternatives or responses or tools that suit us better.
Because of the steep learning curve of programming and the other barriers
mentioned in the thesis, this has often not been possible. But now we know that
there are other ways in, and that it is possible to open up even more.

Here imagine a regex to say thanks to
everyone that helped me along these
two years. Ahah will go and ask on
Stack. Thanks a lot you are the best I
feel blessed humbled versioned
questioned sorted mixtaped merged
refreshed but most of all: happy. And in
these challenging times is no small feat.

salamachi3 .0 . 1 3 .0 .2Hello Worlding

